Feature Selection for Image Categorization
نویسندگان
چکیده
Image classification could be treated as an effective solution to enable keyword-based semantic image retrieval, while feature selection is a key issue in categorization. In this paper, we propose a novel strategy by using feature selection in learning semantic concepts of image categories. To choose representative and informative features for an image category and meanwhile reduce noisy features, a feature selection strategy is proposed. In the feature selection stage, salient patches are first detected by SIFT descriptor and clustered by DENCLUE algorithm. Then the pointwise mutual information between the salient patches and the image category is calculated to evaluate the important patches and construct the visual vocabulary for the category. Based on the selected visual features, the SVM classifier is applied to categorization. The experimental results on Corel image database demonstrate that the proposed feature selection approach is very effective in image classification and visual concept learning.
منابع مشابه
Integrated patch model: A generative model for image categorization based on feature selection
Image categorization could be treated as an effective solution to enable keyword-based image retrieval. In this paper, we propose a novel image categorization approach by learning semantic concepts of image categories. In order to choose representative features and meanwhile reduce noisy features, a three-step feature selection strategy is proposed. First, salient patches are detected. Then all...
متن کاملImproving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملObject-centered Feature Selection for Weakly-Unsupervised Object Categorization
We describe a novel approach of spatio-temporal mapping of local image features, to reduce the number of input data for further object categorization. The main focus of our work is the selection of good features to learn, by achieving a precise mapping of image features either related to static objects or to background. This can be done by initial camera motion estimation, subsequent structure ...
متن کاملSalient Feature Selection for Visual Concept Learning
Image classification could be treated as an effective solution to enable keyword-based semantic image retrieval. In this paper, we propose a novel image classification framework by learning semantic concepts of image categories. To choose representative features for an image category and meanwhile reduce noisy features, a three-step salient feature selection strategy is proposed. In the feature...
متن کاملSelf Organization Map based Texture Feature Extraction for Efficient Medical Image Categorization
Texture is one of the most important properties of visual surface that helps in discriminating one object from another or an object from background. The self-organizing map (SOM) is an excellent tool in exploratory phase of data mining. It projects its input space on prototypes of a low-dimensional regular grid that can be effectively utilized to visualize and explore properties of the data. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006